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The adoption of Basel II standards by the Bangko Sentral ng Pilipinas initiates 

financial institutions to develop value-at-risk (VaR) models to measure market risk. 
In this paper, two VaR models are considered using the peaks-over-threshold (POT) 
approach of the extreme value theory: (1) static EVT model which is the 
straightforward application of POT to the bond benchmark rates; and (2) dynamic 
EVT model which applies POT to the residuals of the fitted AR-GARCH model. 
The results are compared with traditional VaR methods such as RiskMetrics and AR-
GARCH-type models. The relative size, accuracy and efficiency of the models are 
assessed using mean relative bias, backtesting, likelihood ratio tests, loss function, 
mean relative scaled bias and computation of market risk charge. Findings show that 
the dynamic EVT model can capture market risk conservatively, accurately and 
efficiently. It is also practical to use because it has the potential to lower a bank’s 
capital requirements. Comparing the two EVT models, the dynamic model is better 
than static as the former can address some issues in risk measurement and effectively 
capture market risks. 
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1.  Introduction 

Everyday banks operate and conduct activities that have inherent risks. By exposing themselves 

more into such activities, banks expect to gain more revenue. In bond trading for example, banks 

take the risk of losing or gaining since the movement of interest rates is uncertain. They can earn 

more if the volume of investment is increased; but this could result in big losses in the event of an 

unfavorable market scenario. Such type of risk is called market risk or the risk of losses in on- and 

off-balance sheet positions arising from movements in market prices [BSP 2006a]. 

So for banks to cover any unexpected losses arising from their risk-taking activities, the Bangko 

Sentral ng Pilipinas (BSP) requires them to maintain capital that is sufficient to act as buffer against 

insolvency. This requirement is set under BSP Circular 538 or the Revised Risk-Based Capital 

Adequacy Framework. This circular is essentially Basel II – a framework for international capital 

adequacy standards. Circular 538 states that local banks must maintain their minimum capital 

adequacy ratio (CAR) at 10 percent. In formula, CAR is computed as: 

%10

   

     
≥

++

=

riskloperationariskmarketriskcredit

forassetsweightedriskofsum

capital
CAR     (1) 

To meet the CAR requirement, banks may either increase their capital or decrease the level of 

risk in their assets. Increasing capital would be impractical because it would be too costly for a bank. 

To minimize risks, the bank may implement different strategies such as asset reclassification, credit 

risk mitigation techniques, or advanced risk management systems. Minimizing risks therefore would 

be a better option, as it may be less costly to implement. 

To compute for CAR, the procedure of putting a value to the risks in assets is very crucial to 

banks. It is because their measure of risks will determine their required capital and apparently their 

compliance with BSP’s regulations. So to guide banks on how to measure risks, Basel II suggests 

different approaches. In market risk for example, banks may define and measure market risk using 

internal models approach (IMA). Under IMA, capital is computed as a factor of bank’s portfolio, 

which is based on the internal model assumptions on the behavior asset prices and yields. Thus IMA 

requires an internal model to measure market risk. In fact, BSP will allow banks to use IMA in year 

2010 as part of BSP’s Basel II Implementation Plan. Allowing banks to use internal models such as 
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value-at-risk will benefit them since the capital will be commensurate to the current risks measured by 

the model. And it is expected that banks’ required capital could be lowered if a VaR model is used. 

Therefore the implementation of Basel II in the Philippines motivates a study on market risk 

measurement models. 

While several market risk models have been developed, researchers have noted some common 

issues in risk measurement. These issues typically arise from the disagreement between model 

assumptions and actual observations and/or empirical studies on financial data. Among these issues 

are (1) the non-normality and/or fat-tailedness of price distribution of assets (2) the presence of 

serial correlation and heteroscedasticity in financial time series, and (3) the problem of whether to 

model the entire distribution or only the tails. To address these issues, this paper proposes to use the 

extreme value theory (EVT) approach in measuring market risk. 

The paper is structured as follows: section 2 defines value-at-risk (VaR) and discusses existing 

VaR models such as RiskMetrics and autoregressive moving average-generalized autoregressive 

conditional heteroskedasticity (ARMA-GARCH)-type models; section 3 introduces extreme value 

theory, its types of approaches, and VaR models using EVT; section 4 discusses some procedures in 

assessing VaR model by using measures of relative size, accuracy and efficiency; section 5 presents 

the empirical results; and section 6 concludes. 

2. Value-at-risk models 

One popular measure of market risk is the value-at-risk (VaR). It is a measure of the maximum 

potential loss of a financial position during a given time period with a given probability. The 

calculation of VaR is aimed at making a statement of the following form: “We are X percent certain 

that we will not lose more than V pesos in the next N days.” Here V is the VaR of the portfolio, X 

is the confidence level and N is the time horizon [Jorion 2000]. 

Following Tsay [2005], we define VaR in statistical terms. Suppose at the time index t we are 

interested in the risk of a financial position for the next l  periods. Let )(lV∆  be the change in 

value of the assets in the financial position from time t  to l+t . This quantity is measured in pesos 
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and is a random variable at the time index t. Denote the cumulative distribution function (CDF) of 

)(lV∆ by )(xF
l

. We define the VaR of a long position1 over the time horizon l  with probability p as 

)VaR(]VaR)(Pr[
l

l FVp =≤∆=        (2) 

Since the holder of a long financial position suffers a loss when 0)( <∆ lV , the VaR value 

above is negative when p is small, signifying a loss. From the definition, the probability that the 

holder would encounter a loss greater than or equal to VaR over the time horizon l  is p. 

Alternatively, we can interpret VaR as follows: With probability (1-p), the holder would encounter a 

loss less than or equal to VaR over the time horizon l . 

2.1. The RiskMetrics model 

J.P. Morgan developed RiskMetrics method to calculate VaR. Let tr  denote the daily log 

return2, 1−tF  the information set available at time t-1, and tµ  and th  the conditional mean and the 

conditional variance of tr  respectively. RiskMetrics assumes that 

),(~1 tttt hNFr µ−  

where 0=
t

µ ,  2

11 )1( −− −+=
ttt

rhh αα  and 01 >> α . A typical value of α  is 0.94 so the conditional 

variance can be written as 2

11 06.094.0 −− +=
ttt

rhh . RiskMetrics defines 1-day 99 percent confidence 

level VaR as: 

2/1

1

1 )01.0(  +
−×=

t
hFpositionofAmountVaR       (3) 

                                                
1 In bond trading for example, long position happens when a trader buys a bond and then sells it later, thinking that the 

price of the bond is likely to go up in the future. 

2
 A typical unit of observation used in analyzing financial data is the log return of the price of assets. If Pt is the 
price of an asset at time index t, then log return (rt) is defined as rt = ln(Pt/Pt-1). 
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where )01.0(1−F  is the 1 percent quantile of a standard normal distribution (i.e., 

326.2)01.0(1 =−F ) and 1+t
h  is the 1-step ahead forecast of the conditional variance given by 

2

1 )1(
ttt

rhh αα −+=+ . 

2.2. ARMA-GARCH models 

Econometric models such as ARMA-GARCH type can also be used to calculate VaR. These 

models, however, do not forecast the VaR; rather they forecast the return and conditional variance 

of the time series. Here the asset return is forecasted using ARMA models, and the volatility is 

forecasted using the volatility models such as GARCH, exponential GARCH (EGARCH), GARCH-

in-Mean (GARCH-M) and integrated in variance GARCH (IGARCH). These volatility models can 

capture the observed volatility clustering3 in financial time series data. 

An ARMA(p,q)-GARCH(u,v) process is represented by the time series model below: 

∑∑

∑∑

=

−

=

−

=
−

=
−

++=

−++=

v

j

jtj

u

i

itit

q

j

jtjt

p

i

itit

hah

aarr

11

2

0

11

0

βαα

θφφ

       (4) 

where the innovation 
ttt

ha ε2/1=  and 
t

ε  is the error term. Assuming that 
t

ε is normally distributed, 

VaR at time 1+t  is given by the following equation: 

2/1
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where )(1 pF −  is the %100)( p  quantile of a standard normal distribution. Assuming that 
t

ε  is 

distributed as a standardized Student-t distribution with v degrees of freedom, the VaR at time 1+t  

is: 

2/1
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3
 Volatility clustering is commonly observed in financial time series. It is a feature of time series wherein large 
shocks tend to be followed by large shocks for certain time periods and small shocks tend to be followed by small 

shocks for certain time periods. 
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where )(* pt
v

 is the pth quantile of a standardized Student-t distribution with v degrees of freedom.  

Here the computed VaR is actually the VaR of the log return 
t

r . The final VaR figure is 

computed by multiplying ARMA-GARCH VaR estimates by the asset amount or the mark-to-

market value of the financial position. 

While these models can capture serial autocorrelation and volatility clustering, the observed 

non-normality and heavy-tails of the distributions of financial data still pose problems to a risk 

manager. Thus, skewness risk and kurtosis risk are still other issues in risk measurement. So to 

address these problems, this paper proposes to use extreme value theory in measuring market risk. 

3. VaR models using extreme value theory 

Extreme value theory extends the central limit theorem – which deals with the distribution of 

the average i.i.d. (independent and identically distributed) variables drawn from an unknown 

distribution – to the distribution of their tails [Jorion 2000]. Basically EVT models extreme risk or 

event that takes its value from the tail of its distribution. It is a tool that attempts to provide the best 

possible estimate of the tail area of the distribution [McNeil 1999]. 

There are two general types of extreme value models: unconditional and conditional. The 

unconditional types – considered as the oldest group of EVT models – are called block maxima 

models. The conditional types – regarded as the modern EVT approaches – are called peaks-over-

threshold (POT) models. These two models can be used in estimating VaR. 

3.1 Block maxima 

Following Tsay [2005], suppose there is a collection of n daily returns },,{ 1 n
rr K , where )1(r  is 

the smallest order statistic and )(nr is the maximum order statistic. For the case of long position, 

calculation of VaR is concerned with the properties of )1(r . Assume that the returns 
t

r are serially 

independent with a common CDF )(xF and that the range of the return 
t

r is ),( +∞−∞ . The CDF of 

)1(r , denoted by )(1, xFn , is given by:4  

n

n xFxF )](1[1)(1, −−=         (7) 

                                                
4
 See Tsay [2005] for the derivation of equation (7). 
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Suppose we find two sequences }{
n

β and }{
n

α , where 0>
n

α , such that the distribution of 

nnrr αβ /)( )1(*)1( −≡ converges to a non-degenerated distribution as n goes to infinity. The sequence 

}{
n

β is a location series and }{
n

α is a series of scaling factors. Under the independence assumption, the 

limiting distribution of the normalized minimum *)1(r is given by: 





=−−

≠+−−
=

,0  if       )]exp(exp[1

,0  if   ])1(exp[1
)(

/1

*
kx

kkx
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k

      (8) 

for kx /1−<  if 0<k and for kx /1−>  if 0>k , where the subscript * denotes the minimum. The 

parameter k is called the shape parameter which governs the tail behavior of the limiting distribution. 

The limiting distribution of (8) is the generalized extreme value (GEV) distribution for the 

minimum. This distribution has three parameters – 
n

k , 
n

β , 
n

α  – that can be estimated by 

maximum likelihood estimation (MLE), all of which are dependent on n. Now the estimation is 

done by partitioning first the sample into g non-overlapping subsamples of length n, such that the 

number of observations T in the sample is, for simplicity, equal to n*g. Let inr , be the minimum of 

the ith subsample. When n is sufficiently large, nninin rx αβ /)( ,, −= should follow an extreme value 

distribution and the collection of subsample minima },,1|{ , gir in K= is considered as a sample of g 

observations from the extreme value distribution. Now given a small probability p, and plugging in 

the maximum likelihood estimates of GEV parameters, 1-day VaR of a long position in asset with 

return 
t

r  is5 


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One of the difficulties in implementing block maxima models is that the procedure requires a 

lot of data. The collected sample data are even reduced as the block maximum/minimum points are 

only considered. The choice of subsample size n is also a problem as it is not clearly defined [Tsay 

                                                
5
 Details on the derivation of formula (9) are given by Tsay [2005]. 
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2005]. Block maxima is also an unconditional approach, and hence does not consider effects of 

explanatory variables such as volatility [Tsay 2005]. 

3.2. Peaks-over-threshold 

Another type of EVT model is the peaks-over-threshold (POT), which is generally considered 

to be the most useful for practical applications [McNeil 1999]. In contrast with block maxima 

model, POT can efficiently use extreme values even when data is limited. It is used to model large 

observations that exceed a high threshold. Following Tsay [2005] and McNeil [1999], the POT 

modeling procedures are as follows:6 

Let X1, X2, … be identically distributed random variables with unknown underlying distribution 

function F(x) = P{ Xi ≤ x }. These can be daily returns 
t

r  on financial asset or portfolio. Specify a 

high threshold u in the sample (e.g., 99th quantile). Suppose that the ith exceedance occurs at day ti 

(i.e., ux
t

≥ ). The POT approach then considers the data ),( uxt
iti − , where ux

it
−  is the exceedance 

over the threshold u and 
i

t  is the time at which the ith exceedance occurs. Now let uxy
t
−= . The 

conditional distribution of y given ux
t
≥ or the excess distribution function over the high threshold 

u, )(yF
u

, is defined as: 

)(1

)()(
}|{)(

uF

uFuyF
uXyuXPyFu

−

−+
=>≤−=      (10) 

for uxy −<≤ 00  where ∞≤0x  is the right endpoint of F. The Pickands-Balkema-de Haan 

Theorem (see Appendix) states that under certain conditions uF converges to the generalized Pareto 

distribution (GPD) βξ ,G ,  



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=−−
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0,  if       )/exp(1
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6
 For ease in presentation, the right-hand side of return distribution is considered in this section. A positive threshold 
will then be used. 
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where 0>β , and where 0≥x when 0≥ξ  and ξβ /0 −≤≤ x  when 0<ξ . The parameter ξ  is the 

shape parameter which determines the rate at which the tail disappears and β  is the scaling parameter. 

Setting yux += and using (11), equation (10) can be written as: 

)()())(1()( , uFuxGuFxF +−−= βξ        (12) 

To estimate (12), )(, uxG −βζ  is estimated using MLE, whereas )(uF is estimated by its empirical 

estimator. The empirical estimator of )(uF  is nNn u /)( − , where n is the sample size and Nu is the 

number of exceedances of the threshold u. Plugging in the maximum likelihood estimates of the 

GPD parameters and nNn u /)( − , equation (12) is estimated by 

ξ

β
ξ

ˆ/1
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ˆ11)(ˆ

−






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
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ux

n

N
xF u        (13) 

Formula (13) is called the tail estimator. Finally, given a small probability p, and define pq −= 1  

such that )(uFq > , a (1-p)100% confidence level 1-day VaR estimate is calculated by inverting the 

tail estimator formula in (13): 
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This type of EVT model is termed as static model [McNeil and Frey 2000]. In this model, the 

POT is applied directly to the raw return data where the underlying distribution F is assumed to be 

stationary or unconditional. Hence, it does not factor in the volatility of market prices, serial 

correlation and volatility clustering. 

The other EVT VaR model based on POT is called dynamic model. In this model, the 

conditional distribution of F is considered and the volatility of returns is captured. It is dynamic in a 

sense that it is capable of reacting to fluctuations in market prices, hence enabling the model to 

capture the current risks. The dynamic EVT approach involves the following procedures [McNeil and 

Frey 2000]: 
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Let 
t

r  the return at time t be defined by the following model: 

tttt
Zhr 2/1+= µ          (15) 

where 2/1

t
h  and 

t
µ  are the volatility and expected return respectively at time t; 

t
Z  are the noise 

variables of the process with an identical unknown distribution )(zFZ . Using this model and given a 

small probability p, a 1-day (1-p)100% confidence level VaR is estimated by: 

qtt

t

q ZVaRhVaR )(ˆˆ 2/1

11 ++ += µ         (16) 

(As defined in Equation (14), pq −= 1 ). Computing t

qVaR   above entails the following two-stage 

approach: 

Suppose at the close of day t consider a time window containing the last n returns tnt rr ,,1 K+− . 

(1) An AR model with GARCH errors is fitted to the historical data by MLE. The estimates of 

the conditional mean )ˆ,,ˆ( 1 tnt µµ K+−  and standard deviation series )ˆ,,ˆ( 2/12/1

1 tnt hh K+−  are 

calculated recursively from the model. If the model is adequate, the residuals are extracted 

and calculated as 


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h
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The residuals should be i.i.d. if the model is adequate. These residuals can be considered as 

realizations of the unobserved, independent noise variables tnt ZZ ,,1 K+− . The last step in 

stage 1 is to calculate the 1-step ahead forecasts of 1
ˆ

+tµ  and 2/1

1
ˆ

+th . 

(2) Stage 2 begins by confirming that the residuals have fat-tails or leptokurtic. This can be done 

by constructing QQ-plot of the residuals against the normal distribution or by computing 

the excess kurtosis. EVT is then applied to the residuals if they have fat-tails. A fixed high 

threshold u is chosen and it is assumed that residuals exceeding this threshold have a 

generalized Pareto distribution (GPD). The GPD parameters are estimated using MLE and 

then qZVaR )(  is calculated using (14). From here, t

qVaR can be calculated. 
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In the study of McNeil and Frey [2000], it is shown that the dynamic model is better than static 

because the former does not just adequately measure losses in heavy-tailed distributions, but also 

captures volatility clustering, serial autocorrelation and heteroscedasticity attributes of financial data. 

Results of their study also show that dynamic VaR forecasts exhibit sensitivity to price changes. This 

means that the model reacts quickly to changing volatility, enabling it to capture the risks in a timely 

manner. 

4. VaR model assessment 

With the inclusion of VaR models within the capital adequacy framework (Basel II), it can be 

expected soon that Philippine banks will use their VaR models in calculating the required minimum 

regulatory capital to be held against market risks. That is why the choice and evaluation of a VaR 

model is very crucial to a bank and to supervisors like the BSP. So to assess a VaR model, banks 

may look into a model’s conservativism, accuracy and efficiency.  

A VaR model is considered conservative if it systematically produces high estimates of risk relative 

to other models. A model is accurate if its estimates are large enough to cover the true underlying 

risks. Accuracy can be assessed by analyzing the number of times the VaR estimates are lower than 

the losses and the magnitude of those losses. An efficient VaR model provides sufficient conservatism 

(i.e., accurate and conservative) while at the same time minimizes the capital that must be held 

[Engel and Gizycki 1999]. 

4.1. Mean relative bias 

One measure of model conservatism is the mean relative bias (MRB) statistic [Hendricks 1996]. 

It tests whether different VaR models produce risk estimates of similar average size. Given T time 

periods and N VaR models, the mean relative bias of model i is calculated as: 

∑
=

−
=

T

t t

tit
i

VaR

VaRVaR

T
MRB

1

1
        (18) 
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=

=
N

i

itt VaR
N

VaR
1

1
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The mean relative bias is measured in percentage terms, so that an MRB value of, say, 0.05 

implies that a given VaR model is 5 percent higher, on average, than the average estimates of all N 

VaR models.  

4.2. Backtesting 

Backtesting is a comparison of actual trading results with model-generated risk measures. Its 

objective is to test the quality and accuracy of the VaR model. In backtesting, the bank periodically 

counts the number of times that the risk measures were smaller than the trading outcome/losses; 

i.e., the bank counts the number of VaR exceptions. In interpreting the results of backtesting, the 

Basel Committee introduced the three-zone approach found in Table 1. 

Table 1. Backtesting zones based on 260 days covered and 99 percent VaR confidence level 

Zone 
No. of 

Exceptions  

Multiplicative Factor 

(k) 

Green 0 3.00 

  1 3.00 

  2 3.00 

 3 3.00 

  4 3.00 

 Yellow 5 3.40 

 6 3.50 

 7 3.65 

 8 3.75 

 9 3.85 

Red 10 or more 4.00 

If the model falls into the green zone, then there is no problem with the quality or accuracy of 

the model. The yellow zone is an ambiguous zone and the conclusion of model inaccuracy is not 

definite. If the model falls into the red zone, there is a high probability that the model inaccurate. 

4.3. Likelihood ratio tests 

If there is at least one exception, likelihood ratio (LR) tests can be used to assess if the model is 

inaccurate [Christoffersen 1998]. These tests are the LR test of unconditional coverage (LRuc), LR 

test of independence (LRind) and LR test of conditional coverage (LRcc). 
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4.3.1. LR test of unconditional coverage 

The LR test of unconditional coverage checks if the proportion of VaR exceptions (also known 

as empirical failure rate) is equal to the pre-specified level p (e.g., 1 percent for 99 percent VaR). The 

empirical failure rate π1 is estimated by the following statistic: 

∑
=

=<=
T

t

tt
T

T
pVaRrI

T 1

1
1 ))((

1
π̂        (19) 

where T is the total number of out-of-sample observations; )(⋅I  is the indicator variable which is 

equal to 1 if there is exception and zero otherwise; 1T  is the number of exceptions. 

Now to test if the empirical failure rate π1 is equal to p, a test of hypothesis is employed: Ho: π1 

= p vs. Ha: π1 ≠ p. The LRuc test statistic [Jorion 2000] is given by 
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where LRuc is asymptotically distributed as chi-square with 1 degree of freedom. Hence 

if 2

1,pucLR χ> , we reject the null hypothesis and conclude that the empirical failure rate is not equal 

to p, otherwise we accept Ho. Accepting Ho, however, does not always imply that the model is 

correctly specified. The failure rate could be within the pre-specified level p but the VaR exceptions 

are clustered or not independent. A model with clustered VaR exceptions is a sign of inaccurate 

model [Christoffersen and Pelletier 2003]. 

4.3.2. LR test of independence 

If Ho is not rejected in the LRuc test, the VaR model is further assessed using the LR test of 

independence (LRind). It checks if the proportion of the clustered VaR exceptions is equal to the 

proportion of the independent VaR exceptions. Now consider the following statistics: 
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where T00 is the number of two consecutive days without VaR exception; 

T10 is the number of days without VaR exception that is preceded by a day with VaR 

exception; 

T11 is the number of two consecutive days with VaR exceptions; 

T01 is the number of days with VaR exception that is preceded by day without a VaR 

exception; 

π0 is the proportion of VaR exceptions preceded by non- VaR exception; 

π1 is the proportion of two consecutive VaR exceptions. 

Now to use the LRind test, another test of hypothesis is employed: Ho: π0 = π1 vs. Ha: π0 ≠ π1. The 

LRind test statistic [Jorion 2000] is 
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where LRind is asymptotically distributed as chi-square with 1 degree of freedom. Hence, 

if 2

1,pindLR χ> , we reject the null hypothesis and conclude that the exceptions are not independent. 

Accepting Ho on the other hand, would require to further assess the model if the proportion of 

independent exceptions (π0) or clustered exceptions (π1) are not significantly different from the pre-

specified failure rate p. 

4.3.3. LR test of conditional coverage 

If the result of the LRind test shows that the VaR exceptions are independent, then there is still 

a need to check if the proportion of VaR exceptions is equal to the failure rate p. This third test is 

the LR test of conditional coverage (LRcc). It employs the following test of hypothesis: Ho: π0 = π1 = 

p vs. Ha: at least one of π0, π1 is not equal to p. The test statistic is given by Christoffersen [1998]: 

induccc LRLRLR +=          (22) 
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where LRcc is asymptotically distributed as chi-square with 2 degrees of freedom. Therefore if 

2

2,pccLR χ> , we reject Ho and conclude that at least one of π’s is not equal to p; otherwise, the 

model is accurate. 

4.4. Quadratic loss function 

The Basel Committee on Banking Supervision [1996] notes that not only the number of VaR 

exceptions is important, but also the size of exceptions is a matter of regulatory concern. So the 

quadratic loss function may be used in assessing VaR model accuracy. Quadratic loss function does 

not just include the magnitude of exceptions, but it also penalizes more severely those large 

exceptions. The formula is given by Lopez [1998]:7 
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where 1+tL  and 1+tloss  are the loss function value and trading loss, respectively, at time t+1, and 

tVaR  is the VaR forecast at time t. Loss function values are averaged across the out-of-sample 

period. Low average loss function indicates accuracy of a VaR model. 

4.5. Market risk capital 

Market risk capital (MRC) or risk charge is one measure of VaR efficiency. It is one of the 

provisions of Basel II to compute for the MRC when a bank uses IMA for market risk. The general 

MRC required for any given day t is computed as 


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Where k is the supervisory-determined multiplicative factor (see Table 1). To get the total capital 

adequacy requirements, the credit risk charge connected to the issuer of the financial instrument is 

added to the market risk charge applied for trading positions. Here, an accurate VaR model with low 

MRC is considered efficient. 

                                                
7
 Formula (23) assumes that the loss & VaR values are both positive. 
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4.6. Mean relative scaled bias 

Another efficiency measure is the mean relative scaled bias (MRSB). Computation of MRSB 

involves three steps. First, the number of VaR exceptions in the out-of-sample period is counted 

and the percentage of outcomes covered is determined per model. Second, the VaR measures are 

then multiplied to a constant in order to obtain the desired level of coverage. In this step, each VaR 

model is scaled so that it covers 99 percent of losses (for 99% confidence VaR). Finally, the mean 

relative bias (MRB) of each scaled VaR model is computed as in Section 4.1. The computed MRB in 

this last step will be the mean relative scaled bias (MRSB) [Hendricks 1998]. 

The second step requires calculation, on an ex-post basis, of the multiple to obtain coverage or the 

scaling factor.  The scaling factor, iψ , for each VaR model i, is computed so that8 
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    (25)    

where T is the sample size, iF  is the expected no. of exceptions and )1( p− is the VaR confidence 

level. So for a sample size of 260 days and VaR confidence level of 99 percent, iψ  is computed such 

that the total number of exceptions iF  is equal to 2.6. 

5. Results 

This research uses the secondary market interest rates (MART1) of Philippine sovereign papers 

from October 1998 to September 2008. These benchmark rates series belong in one of the twelve 

tenors: 1-month, 3-month, 6-month, 1-year, 2-year, 3-year, 4-year, 5-year, 7-year, 10-year, 20-year 

and 25-year. In-sample data cover the period from October 1998 to August 2007 (maximum of 

2,263 data points); out-of-sample data cover the period from September 2007 to September 2008 

(260 data points). Ten VaR models are then used to measure market risk in each tenor: RiskMetrics, 

AR-GARCH (normal & Student-t), AR-EGARCH (normal), AR-GARCH-M (normal & Student-t), 

AR-IGARCH (normal & Student-t), static EVT, and dynamic EVT. 

After generating the VaR forecasts for each model in each tenor, the number exceptions are 

summarized in Table 2 below. Among the ten models, RiskMetrics has the poorest performance due 

                                                
8 Formula (25) assumes that the loss and VaR values are both positive. 
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to relatively high number of exceptions in all tenors. On the other hand, the top-performing models 

are the AR-IGARCH models (normal & Student-t) with zero exception in all 12 tenors, followed by 

AR-GARCH (Student-t) and AR-GARCH-M (Student-t), both having zero exception in 10 out of 

12 tenors, and lastly dynamic EVT with zero exception in 9 out of 12 tenors. 

 

Table 2. Summary of VaR exceptions and corresponding p-values 

Note: P-values in bold font indicate significance at 5 percent level. 

 
Table 2. Summary of VaR exceptions and corresponding p-values (continued) 

Note: P-values in bold font indicate significance at 5 percent level. 

 

Table 3 below summarizes the average MRB of each model per tenor. Two VaR models have 

near zero or lowest absolute average MRB, namely, the AR-IGARCH (normal) model with lowest 

absolute average MRB in seven tenors and the dynamic EVT model with lowest absolute average 

  RiskMetrics AR-GARCH, normal 
AR-GARCH, 

Student-t 
AR-EGARCH, 

normal 
AR-GARCH-M, 

normal 

Tenor exceptions p-value exceptions p-value exceptions p-value exceptions p-value exceptions p-value 

1M 7 0.0166 3 0.4823 1 0.9267 9 0.0014 3 0.4823 

3M 8 0.0051 3 0.4823 1 0.9267 8 0.0051 4 0.2636 

6M 7 0.0166 4 0.2636 0 1.0000 4 0.2636 4 0.2636 

1Y 10 0.0003 1 0.9267 0 1.0000 2 0.7342 1 0.9267 

2Y 8 0.0051 1 0.9267 0 1.0000 5 0.1216 1 0.9267 

3Y 6 0.0482 3 0.4823 0 1.0000 2 0.7342 3 0.4823 

4Y 4 0.2636 1 0.9267 0 1.0000 3 0.4823 1 0.9267 

5Y 8 0.0051 1 0.9267 0 1.0000 2 0.7342 1 0.9267 

7Y 7 0.0166 1 0.9267 0 1.0000 3 0.4823 1 0.9267 

10Y 8 0.0051 1 0.9267 0 1.0000 2 0.7342 1 0.9267 

20Y 6 0.0482 2 0.7342 0 1.0000 7 0.0166 2 0.7342 

25Y 6 0.0482 6 0.0482 0 1.0000 8 0.0051 6 0.0482 

  
AR-GARCH-M, 

Student-t 
AR-IGARCH, 

normal 
AR-IGARCH, 

Student-t Static EVT Dynamic EVT 

Tenor exceptions p-value exceptions p-value exceptions p-value exceptions p-value exceptions p-value 

1M 1 0.9267 0 1.0000 0 1.0000 9 0.0014 1 0.9267 

3M 1 0.9267 0 1.0000 0 1.0000 7 0.0166 1 0.9267 

6M 0 1.0000 0 1.0000 0 1.0000 6 0.0482 2 0.7342 

1Y 0 1.0000 0 1.0000 0 1.0000 2 0.7342 0 1.0000 

2Y 0 1.0000 0 1.0000 0 1.0000 2 0.7342 0 1.0000 

3Y 0 1.0000 0 1.0000 0 1.0000 2 0.7342 0 1.0000 

4Y 0 1.0000 0 1.0000 0 1.0000 2 0.7342 0 1.0000 

5Y 0 1.0000 0 1.0000 0 1.0000 1 0.9267 0 1.0000 

7Y 0 1.0000 0 1.0000 0 1.0000 1 0.9267 0 1.0000 

10Y 0 1.0000 0 1.0000 0 1.0000 2 0.7342 0 1.0000 

20Y 0 1.0000 0 1.0000 0 1.0000 4 0.2636 0 1.0000 

25Y 0 1.0000 0 1.0000 0 1.0000 4 0.2636 0 1.0000 
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MRB in four tenors. It can be said that these two models are conservative or have less bias 

compared with the other VaR models. 

Table 3. Summary of average MRB of VaR models 

Tenor 
Risk 

Metrics 

AR- 
GARCH, 
normal 

AR- 
GARCH, 
Student-t 

AR- 
EGARCH, 

normal 

AR- 

GARCH-
M, 

normal 

AR- 

GARCH-
M, 

Student-t 

AR- 
IGARCH, 

normal 

AR- 
IGARCH, 
Student-t 

Static 
EVT 

Dynamic 
EVT 

1M -58 * -37 21 -54 -38 18 93 107 ** -54 3 

3M -63 * -36 10 -57 -37 9 126 ** 98 -53 3 

6M -45 * -18 11 -14 -18 11 21 96 ** -42 -3 

1Y -80 * -40 71 -64 -41 71 -21 124 ** -62 42 

2Y -77 * -49 69 -66 -49 70 0 98 ** -58 61 

3Y -69 * -61 64 -58 -61 55 17 95 ** -45 63 

4Y -71 * -30 53 -60 -30 46 14 71 ** -45 51 

5Y -68 * -34 33 -54 -35 32 29 91 ** -37 44 

7Y -66 * -22 32 -51 -25 30 8 103 ** -43 34 

10Y -72 * -35 50 -60 -37 50 16 95 ** -53 46 

20Y -70 * -34 35 -68 -34 35 92 ** 67  -61 38 

25Y -66 -71 58 -73 * -71 41 82 122 ** -63 41 

Notes: Figures in %.  

* indicates lowest MRB in a tenor, ** indicates highest MRB in a tenor.  

The lowest absolute average MRB in a tenor is set in bold. 

Summarized in Table 4 below is the accuracy ranking of the VaR models based on the results of 

backtesting. With the top-five models all falling into the green zone in all 12 tenors, it can be said 

that their accuracy is not significantly different from one another. 

Table 4. Accuracy Ranking of VaR models based on backtesting 

Rank Model 

No. of Zero 
exceptions out of 12 

tenors 

No. of green zones out 

of 12 tenors 

No. of yellow zones 

out of 12 tenors 

No. of red zones out 

of 12 tenors 

1 AR-IGARCH, normal 12 12 0 0 

1 AR-IGARCH, Student-t 12 12 0 0 

3 AR-GARCH, Student-t 10 12 0 0 

3 AR-GARCH-M, Student-t 10 12 0 0 

5 Dynamic EVT 9 12 0 0 

6 AR-GARCH, normal 0 11 1 0 

6 AR-GARCH-M, normal 0 11 1 0 

8 Static EVT 0 9 3 0 

9 AR-EGARCH, normal 0 7 5 0 

10 RiskMetrics 0 1 10 1 

Table 5 shows the results of likelihood ratio tests. Five models with at least one exception in a 

particular tenor – AR-GARCH (normal), AR-GARCH (Student-t), AR-GARCH-M (normal), AR-

GARCH-M (Student-t) and dynamic EVT - have passed the LRuc test. This indicates that these VaR 
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models can accurately predict losses 99 percent of the time. However, three models – RiskMetrics, 

AR-EGARCH (normal) and static EVT – failed in at least one of the LR tests. Failure in the LR 

tests implies that the assumption of 99 percent confidence level is not valid and/or the model is not 

correctly specified. 

Table 5. Summary results of Likelihood Ratio tests 

  RiskMetrics AR-GARCH, normal AR-GARCH, Student-t AR-EGARCH, normal 
AR-GARCH-M, 

normal 

Tenor LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc 

1M A R na A - - A - - R na na A - - 

3M R na na A - - A - - R na na A - - 

6M A - - A - - na na na A - - A - - 

1Y R na na A - - na na na A - - A - - 

2Y R na na A - - na na na A - - A - - 

3Y A A A A - - na na na A - - A - - 

4Y A - - A - - na na na A - - A - - 

5Y R na na A - - na na na A - - A - - 

7Y A A A A - - na na na A - - A - - 

10Y R na na A - - na na na A - - A - - 

20Y A - - A - - na na na A - - A - - 

25Y A A A A - - na na na R na na A - - 

 

Table 5. Summary results of Likelihood Ratio tests (continued) 

  AR-GARCH-M, Student-t AR-IGARCH, normal 
AR-IGARCH, Student-

t Static EVT Dynamic EVT 

Tenor LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc 

1M A - - na na na na na na R na na A - - 

3M A - - na na na na na na A - - A - - 

6M na na na na na na na na na A - - A - - 

1Y na na na na na na na na na A - - na na na 

2Y na na na na na na na na na A - - na na na 

3Y na na na na na na na na na A - - na na na 

4Y na na na na na na na na na A - - na na na 

5Y na na na na na na na na na A - - na na na 

7Y na na na na na na na na na A - - na na na 

10Y na na na na na na na na na A - - na na na 

20Y na na na na na na na na na A - - na na na 

25Y na na na na na na na na na A - - na na na 

 
Notes: “A” means acceptance of null hypothesis or passing the LR test, “R” means rejection of the null hypothesis 

or the model failed the LR test, “na” means that the LR test is not applicable due to zero exception or the previous 

LR test is rejected, “-“ means that the LR test cannot be conducted due to undefined values in the test statistic. 

The results of the quadratic loss function (see Table 6) are similar to backtesting results. 

RiskMetrics is still considered least accurate since it has the highest average loss function in 11 

tenors. The AR-IGARCH (normal and Student-t) models are still considered most accurate because 
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of zero exception, thus resulting in zero percent average loss function in all tenors. Other models 

considered accurate are the AR-GARCH (Student-t) and AR-GARCH-M (Student-t), both with zero 

percent average loss functions in ten tenors, and the dynamic EVT model with zero loss functions 

in nine tenors. 

Table 6. Summary of average loss functions of VaR models per tenor 

Tenor 

Risk 

Metrics 

AR- 
GARCH, 

normal 

AR- 
GARCH, 

Student-t 

AR- 
EGARCH, 

normal 

AR- 
GARCH-

M, 

normal 

AR- 
GARCH-

M, 

Student-t 

AR- 
IGARCH, 

normal 

AR- 
IGARCH, 

Student-t 

Static 

EVT 

Dynamic 

EVT 

1M 2.69 1.15 0.38 3.46 ** 1.15 0.38 0.00 * 0.00 * 3.46 0.38 

3M 3.08 ** 1.15 0.38 3.08 1.54 0.38 0.00 * 0.00 * 2.69 0.38 

6M 2.69 ** 1.54 0.00 * 1.54 1.54 0.00 * 0.00 * 0.00 * 2.31 0.77 

1Y 3.85 ** 0.38 0.00 * 0.77 0.38 0.00 * 0.00 * 0.00 * 0.77 0.00 * 

2Y 3.08 ** 0.38 0.00 * 1.92 0.38 0.00 * 0.00 * 0.00 * 0.77 0.00 * 

3Y 2.31 ** 1.15 0.00 * 0.77 1.15 0.00 * 0.00 * 0.00 * 0.77 0.00 * 

4Y 1.54 ** 0.38 0.00 * 1.15 0.38 0.00 * 0.00 * 0.00 * 0.77 0.00 * 

5Y 3.08 ** 0.38 0.00 * 0.77 0.38 0.00 * 0.00 * 0.00 * 0.38 0.00 * 

7Y 2.69 ** 0.38 0.00 * 1.15 0.38 0.00 * 0.00 * 0.00 * 0.38 0.00 * 

10Y 3.08 ** 0.38 0.00 * 0.77 0.38 0.00 * 0.00 * 0.00 * 0.77 0.00 * 

20Y 2.31 ** 0.77 0.00 * 2.69 0.77 0.00 * 0.00 * 0.00 * 1.54 0.00 * 

25Y 2.31 ** 2.31 0.00 * 3.08 2.31 0.00 * 0.00 * 0.00 * 1.54 0.00 * 

Note: Figures in %. 

** indicates highest average loss function in a tenor, *  indicates lowest average loss function in a tenor. 

For the MRC figures, Table 7 summarizes the results. Although RiskMetrics has the lowest 

MRC in 11 tenors, it does not make it an efficient model because of its poor accuracy. The low 

MRC is due to its low VaR forecasts which understate risk. On the other hand, AR-IGARCH 

(Student-t) model has the highest MRC in ten tenors. Although it is the top-one model in terms of 

accuracy, it is not considered efficient as it mainly overstates risk, resulting in high capital charges, 

which is not practical for banks to implement. Among the top-five models based on backtesting, 

AR-IGARCH (normal) has the lowest MRC in seven tenors (medium- to long-term) while dynamic 

EVT has the lowest MRC in three tenors (short-term). 

Table 7. Summary of average market risk charge (MRC) of VaR models in each tenor 

Tenor 

Risk 

Metrics 

AR- 
GARCH, 

normal 

AR- 
GARCH, 

Student-t 

AR- 
EGARCH, 

normal 

AR- 
GARCH-

M, 

normal 

AR- 
GARCH-

M, 

Student-t 

AR- 
IGARCH, 

normal 

AR- 
IGARCH, 

Student-t 

Static 

EVT 

Dynamic 

EVT 

1M 1.38 * 1.62 3.04 1.61 1.59 2.97 4.70 5.06 ** 1.54 2.58 ‡ 

3M 1.34 * 1.73 2.95 1.57 1.70 2.92 5.90 ** 5.20 1.60 2.76 ‡ 

6M 1.51 * 1.77 2.41 1.87 1.77 2.41 2.52 4.06 ** 1.51 2.09 ‡ 

1Y 0.99 * 2.04 5.75 1.20 2.01 5.74 2.67 ‡ 7.51 ** 1.28 4.79 

2Y 0.85 * 1.47 4.78 1.09 1.47 4.80 2.85 ‡ 5.60 ** 1.23 4.57 
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Tenor 

Risk 

Metrics 

AR- 
GARCH, 

normal 

AR- 
GARCH, 

Student-t 

AR- 
EGARCH, 

normal 

AR- 
GARCH-

M, 

normal 

AR- 
GARCH-

M, 

Student-t 

AR- 
IGARCH, 

normal 

AR- 
IGARCH, 

Student-t 

Static 

EVT 

Dynamic 

EVT 

3Y 0.79 * 0.85 3.45 0.91 0.85 3.24 2.46 ‡ 4.07 ** 1.20 3.42 

4Y 0.68 * 1.54 3.36 0.89 1.54 3.19 2.49 ‡ 3.73 ** 1.24 3.32 

5Y 0.82 * 1.30 2.58 0.92 1.28 2.56 2.49 ‡ 3.65 ** 1.26 2.79 

7Y 0.89 * 1.63 2.72 1.04 1.56 2.69 2.21 ‡ 4.11 ** 1.22 2.76 

10Y 0.89 * 1.61 3.65 1.02 1.55 3.65 2.81 ‡ 4.70 ** 1.21 3.56 

20Y 0.84 * 1.66 3.41 1.02 1.66 3.40 ‡ 4.80 ** 4.19 1.03 3.47 

25Y 0.89 0.79 3.64 0.81 0.79 * 3.24 4.15 5.06 ** 0.86 3.24 ‡ 

Notes: Figures in %.  

** indicates highest average MRC in a tenor, *  indicates lowest average MRC in a tenor,  ‡  indicates lowest 

average MRC in a tenor considering only the top-five models. 

Comparing further the MRC of the top-five models, the minimum and maximum MRC in each 

day in the out-of-sample period are counted (see Table 8). Results show that the models having the 

most number of days with maximum MRC are the AR-IGARCH (Student-t) in ten tenors and the 

AR-IGARCH (normal) in two tenors. This result confirms that the AR-IGARCH (Student-t) model 

generally overstates risk, thereby resulting in zero exception. On the other hand, the models having 

the most number of days with minimum MRC are the AR-IGARCH (normal) in seven tenors, 

dynamic EVT in three tenors and ARGARCH-M (Student-t) in two tenors. Again, the AR-

IGARCH (normal) model is more practical to use in medium- to long-term tenors whereas dynamic 

EVT model is more practical to use in short-term tenors due to their low MRC. 

Table 8. Comparison of the top-five models by counting the no. of days out of 260 with minimum/maximum 

MRC 

Tenor 

AR- 
IGARCH, 

normal 

AR- 
IGARCH, 
Student-t 

AR- 
GARCH, 
Student-t 

AR- 
GARCH-M, 

Student-t Dynamic EVT 

Min Max Min Max Min Max Min Max Min Max 

1M 26 0 0 260 0 0 0 0 234 0 

3M 30 205 0 55 0 0 0 0 230 0 

6M 81 0 0 260 0 0 0 0 179 0 

1Y 260 0 0 252 0 6 0 2 0 0 

2Y 260 0 0 260 0 0 0 0 0 0 

3Y 260 0 0 246 0 0 0 0 0 14 

4Y 260 0 0 230 0 0 0 0 0 30 

5Y 165 0 0 208 0 0 95 0 0 52 

7Y 241 0 0 241 0 0 19 0 0 19 

10Y 260 0 0 260 0 0 0 0 0 0 

20Y 30 225 0 0 0 0 188 0 42 35 

25Y 55 0 0 260 0 0 137 0 68 0 
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Finally, MRSB statistics are presented in Table 9. Among the ten VaR models, AR-IGARCH 

(normal) has the most number of lowest absolute MRSB (three tenors), followed by AR-GARCH 

(normal), AR-GARCH-M (Student-t), static EVT, and dynamic EVT (two tenors each). 

Table 9. Summary of average mean relative scaled bias (MRSB) of VaR models in each tenor 

Tenor 
Risk 

Metrics 

AR- 
GARCH, 
normal 

AR- 
GARCH, 
Student-t 

AR- 
EGARCH, 

normal 

AR- 
GARCH-

M, 
normal 

AR- 
GARCH-

M, 
Student-t 

AR- 
IGARCH, 

normal 

AR- 
IGARCH, 
Student-t 

Static 
EVT 

Dynamic 
EVT 

1M 37 ** -9 -6 -5 -10 -8 -13 28 -4 * -9 

3M 36 -15 -7 -12 -13 -8 -3 * 45 ** -16 -7 

6M -18 ** 0 * 6 10 1 6 -10 -6 7 3 

1Y 6 -7 6 3 -9 5 -2 * 4 7 -13 ** 

2Y 11 5 -6 17 ** 5 -5 * -16 -16 14 -10 

3Y 30 ** -5 -2 -2 -5 -8 -2 * -6 3 -3 

4Y 25 ** 13 -11 -4 13 -15 -7 0 0 * -13 

5Y 23 ** -1 -8 4 -3 -8 -9 -11 14 -1 * 

7Y 16 -3 * -4 16 -7 -5 -10 -15 17 ** -3 

10Y -14 29 -16 -4 32 ** -16 -9 9 -7 -3 * 

20Y 4 1 -7 1 * 1 -8 14 ** -1 1 -6 

25Y 16 ** -12 8 -12 -12 -4 * 7 9 -8 9 

Notes: Figures in %. 

** indicates highest absolute average MRSB in a tenor, * indicates lowest absolute average MRSB in a tenor. 

Comparing the two EVT VaR models, dynamic EVT beats static EVT based on the following 

results: 

� Dynamic EVT has fewer VaR exceptions than static EVT. 

� The MRB statistics show that static EVT generally understates market risk while dynamic 

EVT is more conservative. Static EVT produces relatively lower VaR forecasts. 

� Backtesting results reveal that dynamic EVT is more accurate than static EVT as the former 

is in the green zone in 12 tenors while the latter is in the green zone in nine tenors only and 

in the yellow zone in three tenors. Dynamic EVT passed all LR tests indicating model 

accuracy while static EVT failed in one LR test indicating that the model is not correctly 

specified. Also, average loss function of static EVT is higher than that of dynamic EVT, 

implying that static EVT is less accurate than dynamic EVT. 

� Though static EVT has lower average MRC than dynamic EVT, static EVT is not 

necessarily more efficient as its low MRC is mainly due to its low VaR forecasts. Comparing 

the average absolute MRSB, dynamic EVT has relatively lower average MRSB than static 

EVT. Hence, dynamic EVT is more efficient than static EVT. 
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6. Conclusion 

Less than a year from now, the BSP hopes to achieve full implementation of Basel II in the 

Philippines. With this initiative, it can be expected that local universal and commercial banks 

(UBs/KBs) will start developing internal risk measurement models, not just to comply, but also to 

reduce risk-based capital charges. This study considers two value-at-risk models using the POT 

approach of EVT, which can serve as potential internal market risk models: static and dynamic. 

These models are applied to the benchmark rates (secondary market rates) of the 12 tenors of 

government securities. The findings are summarized below: 

(1) The static EVT model is a straightforward application of EVT to the delta yield 

series while dynamic EVT is the application of EVT to the residuals of the fitted 

AR-GARCH model of the delta yield series. Results show that the dynamic EVT 

model is more efficient than static EVT, i.e., dynamic EVT predicts losses more 

effectively and has less VaR exceptions than static EVT. It is also a better EVT 

model because it can cover some risk measurement issues such as non-normality of 

distribution, heavy-tails, autocorrelation, non-constant variance and volatility 

clustering. 

(2) AR-IGARCH (normal) and Dynamic EVT are the most conservative VaR models 

based on low mean relative bias statistics. Specifically, AR-IGARCH (normal) is 

most conservative in medium- to long-term tenors while dynamic EVT is most 

conservative in short-term tenors. Both are able to capture risks by generating VaR 

figures that are high enough to estimate the losses. 

(3) The accuracy of the dynamic EVT model is comparable to the AR-GARCH-type 

VaR models, i.e., dynamic EVT’s accuracy is not significantly different from the 

econometric VaR models based on the number of exceptions and backtesting 

results. Dynamic EVT falls into the green zone of backtesting in all 12 tenors, 

indicating high probability of model accuracy. Results of likelihood ratio tests and 

loss functions also indicate that dynamic EVT is one of the most accurate VaR 

models. 

(4) Based on the mean relative scaled bias statistics, dynamic EVT is efficient as it is 

both conservative and accurate. Furthermore, among the top-performing VaR 

models, dynamic EVT is one of the most efficient for having low market risk 
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charges specifically in short-term tenors. Hence it is practical to use and has a 

potential to lower the required market risk capital. 

With these results, it can be concluded that the study has successfully assessed extreme value 

theory’s potential as a risk measure. EVT-based VaR model like dynamic EVT is able to address 

some known issues in risk measurement. It can also measure risk conservatively, accurately and 

efficiently, therefore making it a candidate internal market risk measurement model for banks. 



APPENDIX 
 
 
The Pickands-Balkema-de Haan Theorem: For a large class of underlying distributions we can find a 
function )(uβ  such that 
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The important result of the theorem is that, for a large class of underlying distributions F, the excess 

distribution function uF  converges to the generalized Pareto as the threshold u is progressively 

increased. The class of underlying distributions for which the theorem holds comprises essentially all 
common distributions of statistics [McNeil and Frey 2000]. These distributions can be grouped 
according to the value of the parameter ξ  in the limiting GPD approximation to the excess 

distribution. When 0>ξ , then the underlying F corresponds to heavy-tailed distributions whose 

tails decay like power functions such as the Pareto, Student-t, Cauchy, Burr, loggamma and Fréchet 
distributions. If 0=ξ , then F corresponds to distributions whose tails decay exponentially such as 

the normal, exponential, gamma and lognormal. The case 0<ξ , are the group of short-tailed 

distributions with finite right endpoint, like the uniform and beta distributions. 
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